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Received 27 March 2009, in final form 26 May 2009
Published 30 June 2009
Online at stacks.iop.org/JPhysA/42/295201

Abstract
Scattering on thePT -symmetric Coulomb potential is studied along a U-shaped
trajectory circumventing the origin in the complex x plane from below. This
trajectory reflects PT symmetry, sets the appropriate boundary conditions
for bound states and also allows the restoration of the correct sign of the
energy eigenvalues. Scattering states are composed from the two linearly
independent solutions valid for non-integer values of the 2L parameter, which
would correspond to the angular momentum in the usual Hermitian setting.
The transmission and reflection coefficients are written in a closed analytic
form, and it is shown that, similar to other PT -symmetric scattering systems,
the latter exhibit the handedness effect. Bound-state energies are recovered
from the poles of the transmission coefficients.

PACS numbers: 03.65.Nk, 02.30.Gp, 11.30.Er

1. Introduction

The Kepler–Coulomb problem has always played a special role in the formulation and
application of quantum mechanics. Besides being one of the textbook examples for exactly
solvable problems, it also exhibits features that have always attracted the attention of
mathematical physicists. Among these one can mention that the Coulomb potential possesses
both discrete and continuous spectra, which can be associated with dynamical symmetry
and Lie algebras describing them (see e.g. [1] for a review). Although in the description of
realistic physical systems the three-dimensional Coulomb potential and the associated radial
Schrödinger equation are used in most cases, much work has been done extending the Coulomb
potential to other dimensions. Of these, the one-dimensional Coulomb potential is the most
notable, as the singularity at x = 0 raises interesting questions both for the V (x) ∼ −x−1

and V (x) ∼ −|x|−1 potentials (see e.g. [2] and references therein). The discussion of this
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seemingly humble system requires techniques like the self-adjoint extension of the relevant
differential operator [3].

Manifestly non-Hermitian versions of the Coulomb potential have also been studied in
terms of PT -symmetric quantum mechanics. In this theory [4], Hamiltonians invariant with
respect to the simultaneous P space and T time inversion were found to exhibit characteristic
features of Hermitian systems, such as partly or fully real energy spectrum and the conservation
of the norm (see e.g. [5] for a recent review).

The first examples for PT -symmetric potentials were of the type V (x) = x2(ix)ε ,
including the archetypal imaginary cubic potential for ε = 1. After the first numerical
results, the conjecture of the reality of the energy spectrum was proven analytically for such
potentials [6]. An interesting aspect of these systems is that often they cannot be defined on the
real x-coordinate axis, rather their solutions are normalizable only along certain trajectories of
the complex x plane. This was the case, for example, for the above potential with ε � 2, when
these trajectories had to fall into wedges lying in the lower half of the plane in ε-dependent
positions symmetrical with respect to the imaginary axis.

Later the PT -symmetric version of a number of exactly solvable potentials was
formulated, mainly along the real x-axis or along a line parallel with it x − ic (see e.g. [7] and
references therein). The importance of this imaginary shift was that singularities lying on the
real x-axis could be avoided and, at the same time, the energy spectrum remained independent
of c. In this way, real potentials defined on the positive half-axis could be extended to negative
x values too. As a result of this, solutions irregular in the Hermitian case became regular in
the PT -symmetric version of the potential, and this led to a richer energy spectrum.

The Coulomb potential was among the first exactly solvable potentials considered within
the PT -symmetric setting. It was found, however, that it cannot be defined on the real
x-axis because the solutions are not regular for both x → ∞ and x → −∞ [7]. In [8] a
parabolic trajectory was proposed, which was inspired by the PT -symmetrized version of the
well-known harmonic oscillator–Coulomb mapping. This study revealed that the spectrum of
the PT -symmetric Coulomb potential includes a second set of discrete energy eigenvalues in
addition to the one that is present also in the spectrum of the real Coulomb potential. But as
a more interesting feature, the energy spectrum was inverted [8]. The interpretation of this
unusual finding was given later in [9]. The transformation properties of the solutions under
the PT operation including solutions both with real and pairwise complex conjugate energy
eigenvalues were also discussed [10]. Another study of the PT -symmetric Coulomb potential
was done in [11]: there the Coulomb potential was defined as V (x) ∼ |x − ic|−1.

In the present work we extend, to the scattering scenario, the discussion of the PT -
symmetric Coulombic bound states as presented in [8, 9]. In this direction we intend to pursue
two ideas. The first one reflects the existence of a number of publications [12–16] where
the standard PT -symmetric version of the scattering problem has already been described and
developed in application to a number of exactly solvable potentials. We feel inspired by the
observation that in all of these works the scattering has only been considered along the real
x-axis and/or along a trivially complexified, shifted straight-line contour x(s) = s − ic with
a real variable s and constant c. We shall change this perspective by employing an utterly
nontrivial negative-mass generalization of the complex integration path x = xU

(ε)(s) as already
proposed, in the context of the stabilization of the Coulomb-bound states in [9] (see also
equation (5) below). In this setting, we shall reveal the new role of the real parameter ε which
indeed appears to bring a new degree of freedom in the phenomenological scattering theory.

The second motivation for our present interest in the PT -symmetric Coulombic scattering
along a U-shaped contour x(s) given in [9] is more physical since it reflects the unique
possibility of the coexistence of discrete and scattering states in a single potential (in this
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respect cf, e.g., the review [1] once more). We have to emphasize that in the PT -symmetric
context such a feature has not yet been achieved, even in the models of scattering along
curved–complex contours (cf, e.g., [17] where the ‘tobogganic’ integration path x = x(s)

has been chosen as extending, in principle, along several Riemann sheets of the scattering
wavefunctions ψ(x(s))). Thus, the present U-shaped choice of xU

(ε)(s) will represent the
physics which varies with the ‘contour width’ ε. This seems to offer a scattering-scenario
analogue of the variability of the bound-state spectra mediated, according to [4, 17], by the
variability of our choice of Stokes’ ‘wedges’ in the complex x plane.

The structure of the paper is as follows. In section 2, the general formulation of the
problem is presented together with the U-shaped trajectory along which the scattering problem
is considered. Section 3 deals with the actual calculation of the transmission and reflection
coefficients, while the results are summarized in section 4.

2. Definition of the problem

Let us consider the Schrödinger equation

h̄2

2m

[
− d2

dx2
+

L(L + 1)

x2

]
�(x) + V (x)�(x) = E�(x), (1)

defined in the x variable, which runs along a trajectory of the complex x plane. Let us assume
that this trajectory can be parametrized in terms of a real variable as x(s). In order to implement
PT symmetry of this system, we introduce

V (x) = iZ

x
, (2)

where Z and L(L+ 1) are real. This latter condition is met if L is chosen real. The two linearly
independent solutions of (1) can be written in terms of the confluent hypergeometric functions
as

�1(x) = C1e
−kxxL+1

1F 1(1 + L + iZ/(2k), 2L + 2, 2kx), (3)

�2(x) = C2e
−kxx−L

1F 1(−L + iZ/(2k),−2L, 2kx), (4)

where 2mE/h̄2 = −k2. Note that (3) and (4) represent the two linearly independent solutions
only if 2L /∈ Z.

Equation (1) with (2) differs from the usual radial Schrödinger equation of the Coulomb
problem in the complexified potential, and also in the trajectory it is defined on. In a systematic
reformulation of real solvable potentials and the respective bound states to theirPT -symmetric
counterpart it was found [7] that this problem cannot be defined on the real x-axis or its
imaginary shifted version x − ic, because the boundary conditions cannot be implemented
in both directions due to the exponential factor in (3) and (4). In an effort to determine the
genuine PT -symmetric version of the Coulomb potential, the well-known Coulomb-harmonic
oscillator mapping was used: this transformation was applied to the PT -symmetric harmonic
oscillator defined on the imaginary shifted real axis x − ic [8]. The resulting trajectory was
a parabola in the first and fourth quadrants, circumventing the origin from the left. In order
to make it PT -symmetric, i.e. left–right symmetric in the coordinate space, it had to be tilted
to the first and second quadrants by the multiplication of ix. In order to keep the kx quantity
intact, k also had to be tilted in the opposite direction in the k wave number space as −ik. This
resulted in the unusual finding that the energy spectrum was inverted, as can be seen from the
relation 2mE/h̄2 = −k2. Note that the two sets of discrete-energy solutions discussed in [8]

3
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Figure 1. The U-shaped curve in a complex x plane for ε = 2

are obtained from (3) and (4) by substituting a non-positive integer in the first argument of
the respective confluent hypergeometric functions, reducing them to the expected generalized
Laguerre polynomial form [18]. (In order to match the formulae of [8] with those obtained
here, the following substitutions have to be made: t → x,A → L + 1/2, e2 = 1, while κ2

should be chosen as Z/[2(n + L + 1)] and Z/[2(n − L)] in the two cases, corresponding to
the two possible values of the quasi-parity q = ±1.)

As another possible trajectory, a U-shaped curve circumventing the origin, illustrated in
figure 1, was proposed in [9]. It is defined for a suitable ε > 0 as

x(s) = xU
(ε)(s) =

⎧⎪⎨
⎪⎩

−i
(
s + π

2 ε
) − ε, s ∈ (−∞,−π

2 ε
)
,

εei(s/ε+3/2π), s ∈ (−π
2 ε, π

2 ε
)
,

i
(
s − π

2 ε
)

+ ε, s ∈ (
π
2 ε,∞)

.

(5)

The asymptotic ε dependence of this curve has an immediate physical meaning because it
enables us to distinguish between non-equivalent alternative asymptotes of the curves x(s)

along which the non-equivalent asymptotic boundary conditions will be specified for our
wavefunctions. Of course, in contrast to the scattering wavefunctions, which must be different
on the left and right asymptotic branches of x(s), all of the curves of coordinates exhibit the
same left–right symmetry x(−s) = −x∗(s) in the complex x plane, which combines spatial
reflection P with complex conjugation T that mimics time reversal. It is seen that for the large
|s| (in fact, for |s| � επ/2), the solutions behave as exp(±ik|s|). For real k = (−2mE)1/2/h̄

(i.e. for m > 0 and E < 0 of [8] or for m < 0 and E > 0 in [9]), this represents an oscillatory
solution. In parallel, for an imaginary k (i.e. for m > 0 and E > 0 or for m < 0 and E < 0), it
corresponds to exponentially decaying or growing solutions, depending on the sign of Im(k).
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The next result of this analysis, presented also in [9], is that at the negative mass, the
U-shaped parametrization (5) opens the way towards the simultaneous description of the bound
and scattering states. In this setting, the role of the asymptotic physical coordinate is played
by the real parameter s of course.

The matching of logarithmic derivatives is usually used in models where the potential V

is, at some point x(s0) of the curve of (possibly, complexified) coordinates, discontinuous. For
analytic potentials (leading to analytic wavefunctions ψ(x)), the situation is different since
these functions are usually well defined in all the points of some Riemann surface S. This
means that, in general, our analytic wavefunctions are multi-valued functions which become
single-valued, typically, on any selected Riemann sheet specified, say, as a subdomain D of
a cut complex plane C. In such a scenario, it is only necessary to match the logarithmic
derivatives of our analytic wavefunctions ψ(x(s)) during transition of the path x(s) between
neighbouring Riemann sheets of the Riemann surface (i.e. typically, between the pairs of
non-overlapping subdomains D± of C). For this purpose, it is usually sufficient to employ the
analyticity of ψ(x) and to simplify the matching via a suitable deformation of the path x(s).
Thus, most easily, one may analyse the transition between D+ and D− just in an arbitrarily
small vicinity of a branch point where functions ψ(x) degenerate to their dominant parts with
trivial analytic-continuation properties.

3. Scattering in the PT -symmetric Coulomb potential

In what follows, we shall make use of the parametrization (5) to study scattering on the PT -
symmetric Coulomb potential at negative mass. In [9] this unusual option has been explained
as making the PT -symmetric Coulomb-bound states stable. Here, we shall emphasize that
such an option is also necessary for a consistent description of the scattering along the U-shaped
complex contour.

On a purely technical level, we shall employ the natural analytic continuity of functions
(3) and (4). In order to facilitate the implementation of this idea, the auxiliary complex
phase factors exp(2π i(L + 1)) and exp(2π i(−L)) will be introduced in the two solutions for
Re (x) > 0. Then, the asymptotic expansion of the solutions can be written as [19]

1F 1(a, b, z) ∼ �(b)

�(b − a)
(z−1 eiπ )a2F 0(a, 1 + a − b,−z−1)

+
�(b)

�(a)
ezza−b

2F 0(b − a, 1 − a, z−1), (6)

where Im(z) > 0, |Arg(z)| < π as |z| −→ ∞.
Applying (6) to (3) and (4) and employing the parametrization of x (5), the following

asymptotic expansions are obtained for |s| → ∞:

ψj(s → −∞) ∼ aj− ei(ks− Z
2k

ln(−2ks)) + bj− e−i(ks− Z
2k

ln(−2ks)),

ψj (s → ∞) ∼ aj+ ei(ks+ Z
2k

ln(2ks)) + bj+ e−i(ks+ Z
2k

ln(2ks)),
(7)

where j = 1, 2. The logarithmic terms in the exponentials are characteristic of the Coulomb
asymptotics and indicate that the Coulomb potential vanishes slower than genuine short-range
potentials exhibiting the exponential tail, for example [20]. The coefficients are

a1+ = C1(2k)−L−1 e−ikπε/2 eiπ(2L+2) e− πZ
4k ekε �(2L + 2)

�(L + 1 + iZ/(2k))
, (8)

a1− = C1(2k)−L−1 eikπε/2 eiπ(L+1) e− πZ
4k ekε �(2L + 2)

�(L + 1 − iZ/(2k))
, (9)
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b1+ = C1(2k)−L−1 eikπε/2 eiπ(3L+3) e− πZ
4k e−kε �(2L + 2)

�(L + 1 − iZ/(2k))
, (10)

b1− = C1(2k)−L−1 e−ikπε/2 e− πZ
4k e−kε �(2L + 2)

�(L + 1 + iZ/(2k))
, (11)

a2+ = C2(2k)L e−ikπε/2 eiπ2L e− πZ
4k ekε �(−2L)

�(−L + iZ/(2k))
, (12)

a2− = C2(2k)L eikπε/2 e−iπL e− πZ
4k ekε �(−2L)

�(−L − iZ/(2k))
, (13)

b2+ = C2(2k)L eikπε/2 e−iπ3L e− πZ
4k e−kε �(−2L)

�(−L − iZ/(2k))
, (14)

b2− = C2(2k)L e−ikπε/2 e− πZ
4k e−kε �(−2L)

�(−L + iZ/(2k))
. (15)

Note that as expected from the functional form of the solutions, the interchange of the indices
1 ↔ 2 corresponds to the interchange L ↔ −L − 1. These coefficients are also connected by
the expressions

b1+ = a1− e−2kε e2iπ(L+1), b1− = a1+ e−2kε e−2iπ(L+1), (16)

b2+ = a2− e−2kε e2iπ(−L), b2− = a2+ e−2kε e2iπL. (17)

The asymptotic expansion of the general wavefunction 	(x(s)) = αψ1(x(s)) + βψ2(x(s)) is
then the following:

	(s → −∞) ∼ (αa1− + βa2−) ei(ks− Z
2k

ln(−2ks)) + (αb1− + βb2−) e−i(ks− Z
2k

ln(−2ks)), (18)

	(s → ∞) ∼ (αa1+ + βa2+) ei(ks+ Z
2k

ln(2ks)) + (αb1+ + βb2+)bj+ e−i(ks+ Z
2k

ln(2ks)). (19)

In the following step, we may construct solutions that correspond to an incoming wave from
one direction in order to evaluate the reflection and transmission coefficients [16]. Using the
coefficients above, the following results are obtained after some manipulations with gamma,
trigonometric and exponential functions:

TL→R(k) = i

2π
e−iπkε e

πZ
2k �(−L − iZ/(2k))�(L + 1 − iZ/(2k)), (20)

RL→R(k) = TL→R(k) e−2kε
(−e− πZ

k + 2 cos(2πL)
)
, (21)

TR→L(k) = −TL→R(k), (22)

RR→L(k) = TR→L(k) e2kε e
−πZ

k . (23)

It is seen that, as expected, the bound-state energies emerge from the poles of TL→R(k) (20),
i.e. when the arguments of the gamma functions are set to the −n non-positive integer.

Equation (22) is also in accordance with the results of scattering on other PT -symmetric
potentials in that the transmission coefficient does not show the handedness effect, except for a
trivial factor of −1, while the reflection coefficients clearly demonstrate handedness [14, 16].
This means that, similar to other examples, waves arriving from the asymptotically absorptive
side scatter differently from waves arriving from the asymptotically emissive one.
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Figure 2. The PT -symmetric Coulomb potential plotted as the function of s parameter for
Z = 1, ε = 0.005, and (a) L = 3.75, (b) L = 3.53, (c) L = 3.10, (d) L = 3.01.

To exemplify the results, we present in figure 2 the potential as the function of s for some
parameters, together with the transmission and reflection coefficients in figure 3 for a series of
parameters. As expected, the real and the imaginary potential components are even and odd
functions of s; furthermore, the real component decays quicker than the imaginary one as it
should be based on (1). The role of the ε parameter is essentially that of a length scale. L and
Z set the scale of the real and imaginary potential components, respectively.

It is seen that the large-k behaviour of TL→R(k) is relatively smooth, while those of the
reflection coefficients are dominated by the exp(±2kε) factors. An exception for this behaviour
is seen only near integer values of L, which are excluded from the present discussion. The Z
‘charge’ parameter does not influence the results in an essential way.

4. Summary

Scattering on the PT -symmetric Coulomb potential was discussed on a trajectory of the
complex x plane. This trajectory was a U-shaped curve circumventing the origin from below,
guaranteeing the asymptotical regularity of bound states. From the topological point of view,
it is similar to the parabolic path obtained from the application of the harmonic oscillator–
Coulomb mapping of bound states to thePT -symmetric setting [8]. It is also reminiscent to the
trajectories obtained by similar regularity arguments for the power-type potentials appearing
in the first publications of PT -symmetric quantum mechanics [4]: there the allowed wedges
for the solutions were located in the lower half of the complex x plane, while here the allowed
domain is the upper half, corresponding formally to the inverted power (ix)−1 expression of
the Coulomb potential. In addition to the Coulombic potential term, a centrifugal-like term

7
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Figure 3. Transmission and reflection coefficients for Z = 1, ε = 0.005, and (a) L = 3.75,
(b) L = 3.53, (c) L = 3.10, (d) L = 3.01.

L(L + 1)x−2 was also considered. Here integer values of L were excluded, because in that
case the linearly independent solutions had to be defined in another way.

Parametrizing the trajectory as x(s) in terms of the real parameter s ∈ (−∞,∞) allowed
the expression of the asymptotic solutions in a form familiar from the discussion of the real
Coulomb potential. When parametrized in terms of s, the real and the imaginary potential
components vanished as s−2 and s−1, i.e. the imaginary potential component dominates the
problem asymptotically.

The transmission and reflection coefficients were determined, from the asymptotic
solutions, with special attention to the continuity of the solutions in the complex plane. It was
found that the transmission coefficients for waves arriving from the two directions differ only
in a trivial factor of −1, while the reflection coefficients exhibit manifest handedness. This
is similar to other examples for scattering in PT -symmetric potentials, which, however, were
defined on the real x-axis or its trivial shifted version x − ic. The ε parameter appearing in
the definition of the U-shaped curve plays a role similar to the c parameter applied in [12, 13]
to shift the trajectory off the real x-axis. Although it changes the potential shape, it does not
influence the energy spectrum.

The results showed strong dependence on the ε parameter that sets the distance of the
U-shaped trajectory from the positive imaginary axis, while the Z ‘charge’ parameter did not
influence the results in an essential way. It essentially sets the relative weight of the imaginary
and real potential components. Dependence on the L parameter was also significant in that the
transmission and reflection coefficients showed rapid variations close to the forbidden integer
values of L.

As another aspect similar to other scattering problems, both Hermitian andPT -symmetric,
the two sets of bound-state energy eigenvalues described in [8] could be recovered from the
poles of the transmission coefficients. Furthermore, the reparametrization of the problem in
terms of the s variable also allowed us to recover the energy spectrum with the correct sign:
E < 0 for bound states and E > 0 for scattering states.

8
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[12] Lévai G, Cannata F and Ventura A 2001 J. Phys. A: Math. Gen. 34 839–44
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